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Tomographic phase-space mapping in an intense particle beam is reviewed. The diagnostic is
extended to beams with space-charge by assuming linear forces and is implemented using either
solenoidal or quadrupole focusing lattices. The technique is benchmarked against self-consistent
simulation and against a direct experimental sampling of phase-space using a pinhole scan. It is
demonstrated that tomography can work for time-resolved phase-space mapping and slice emittance
measurement. The technique is applied to a series of proof-of-principle tests conducted at the
University of Maryland. © 2010 American Institute of Physics. �doi:10.1063/1.3298894�

I. INTRODUCTION

Maintaining and preserving a high density of particles in
phase-space is an important requirement for beams of many
accelerator applications. Examples of those include
accelerator-driven neutron sources,1 high luminosity high-
energy colliders,2 free-electron lasers,3 energy-recovery
linacs,4 and heavy-ion inertial fusion �HIF� drivers.5 At the
low-energy end of these accelerators, the particle dynamics
can be significantly affected by their mutual repulsion, also
known as space-charge.6 Space-charge can engender collec-
tive behavior7 and is often destructive to the beam.8,9 For
instance, space-charge can cause halo formation10 which can
result to beam losses and activation of the machine. There-
fore, having a good understanding of beams with space-
charge is necessary, and phase-space reconstruction is an im-
portant tool in achieving this goal.

Tomographic techniques previously have shown success
in reconstructing the phase-space distribution. Computerized
tomography is well known in the medical community and
was originally developed to process x-ray images. A Norwe-
gian physicist Abel �1826� first formulated the concept of
tomography11 for an object with axisymmetric geometry.
Nearly 100 years later, an Austrian mathematician Radon
�1917� developed a theorem extending the idea to arbitrarily
shaped objects; it stated that an object in an n-dimensional
space can be recovered from a sufficient number of projec-
tions on to �n−1�-dimensional space.12

In beam physics, we can map the phase-space using in-
formation taken from the distribution of spatial density at the
same point. A simple scaling equation relates the spatial
beam projections to the Radon transform of the transverse-
phase space, as demonstrated in the 1970s by Sander et al.13

Specifically, the authors imaged the beam at different posi-
tions along the beam line and then reconstructed the phase-
space distribution using tomographic computer programs.

The unavailability of profile monitors along the beam line
limited these spatial projections to three; therefore, the reso-
lution of the reconstructed phase space was sparse. Similarly,
Fraser14 reconstructed the phase space by tomography via
either two or three projections. Again, with so few views, the
phase-space plots lacked structure.

Phase-space tomography was implemented with greater
accuracy by the study of McKee et al.15 wherein they com-
bined the ideas of tomography with quadrupole scanning to
recover density information in phase space. To account for
beam stretching while scanning the magnet, these researchers
scaled the profiles using a scaling parameter. McKee et al.
demonstrated that both the scaling parameter and the angle
of projection can be calculated from the beam’s transport
matrix. Since then, several authors adopted a similar
approach.16–20

We note that all these tomography studies were applied
to relativistic beams, and the tomography algorithm did not
consider space-charge forces. In this work a model is pre-
sented to apply tomography to beams with space charge. The
technique is generalized to account for both solenoidal- and
quadrupole-focusing lattices. The method is benchmarked by
computer simulation and a pinhole scan, an independent
method to experimentally obtain phase spaces. It is also
demonstrated that tomography can work for time-resolved
phase-space mapping and slice emittance measurement,
given the right diagnostics. Finally, we review the results
obtained in experiments at the University of Maryland using
this generalized version of the tomography diagnostic.

The outline of this paper is as follows. In Sec. II we
review the tomographic algorithm for beams with space
charge. In Sec. III, we describe our approach to validate
tomography through simulation. In Sec. IV we review a
number of experiments conducted at the University of Mary-
land by using phase-space tomography. Finally, we present
our conclusions in Sec. V.
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II. TOMOGRAPHY THEORY

The goal of tomography is to reconstruct of a higher
n-dimensional space from projections at a lower �n−1� di-
mension. Suppose that f�x ,y� corresponds to a two-
dimensional distribution that we wish to reconstruct. Let
�=x cos �+y sin ��0����� be the equation of a line, L,
that is at a distance � from the origin and forms an angle, �,
with the y-axis. Then, the line integral along L is defined as21

f̂���� = �
L

f�x,y�ds

= �
−�

� �
−�

�

dxdyf�x,y���� − x cos � − y sin �� . �1�

The function f̂���� is known as the Radon transform of the
distribution f�x ,y�. A projection of f�x ,y� is formed by com-
bining a set of line integrals. The simplest projection is a
collection of “parallel” line integrals, as is given by Eq. �1�
for a fixed � while � is varied. Such projections taken at
various angles can be used to recover the original distribu-
tion via the Fourier backprojection algorithm �FBA�.21

Below is an outline of the FBA method that we imple-
mented. If F�u ,v� is the two-dimensional Fourier transform
of the function f�x ,y�, then its inverse Fourier transform is
given by f�x ,y�=�−�

� �−�
� F�u ,v�ej2��ux+vy�dudv. By exchang-

ing the rectangular coordinate system in the frequency do-
main �u ,v� for a polar coordinate system �w ,��, the equation
becomes f�x ,y�=�0

��−�
� F�w ,���w�ej2�w�dwd�. Using the

Fourier slice theorem21 we substitute the one-dimensional
Fourier transform of the Radon transform at angle, �,

S��w�=�−�
� f̂����e−j2�w�d�, for the two-dimensional Fourier

transform F�w ,��. Then,

f�x,y� = �
0

� �
−�

�

S��w��w�ej2�w�dwd� . �2�

Equation �2� is further simplified to

f�x,y� = �
0

�

Q����d� , �3�

where Q is given by Q����=�−�
� S��w��w�ej2�w�dw and is

known as “filtered projection.” Therefore, if several parallel
projections corresponding to angles from 0 to � are known,
the tomographic image can be reconstructed in two steps.
First, the filtered projections Q are obtained; and, second, the
resulting projections for each angle are added �using Eq. �3��
to generate an estimate of the distribution f�x ,y�. The accu-
racy of the reconstruction will depend on the number of pro-
jections and the corresponding angular resolution between
them.

Next, we relate the Radon transform to mapping the
beam’s phase space. Figure 1 illustrates a typical tomography
experimental setup. Suppose that ��y0 ,y0��z0

and ��y ,y��z1
are the phase-space distributions at two certain points, z0 and
z1, along the beam line. In a linear system, the particle mo-
tion between the two positions obeys

�y

y�
	 = T�y0

y0�
	 , �4�

where T= � T11 T12

T21 T22
�=
i=1

N DN+1MNDNMN−1DN−1¯M1D1 is the
transport matrix. We note that M and D are the magnet and
drift matrices, respectively. Placing a screen along the
beam’s path at z1 provides a two-dimensional projection of
the four-dimensional phase-space distribution f�x ,x� ,y ,y��z1

,
which is given by g�x ,y�z1

=��f�x ,x� ,y ,y��z1
dx�dy�. Inte-

grating this distribution over x leads to the spatial beam pro-
files along y,

c�y�z1
=� g�x,y�z1

dx

=� �� � f�x,x�,y,y��z1
dxdy�	dx�. �5�

McKee et al.15 showed that a simple scaling equation relates
those beam profiles to the Radon transform, �̂�,z0

��� of the
transverse phase space ��y0 ,y0��z0

. That is

�̂�,z0
��� = �̂�,z0

�y/s� = sc�y��,z1
, �6�

where s is the scaling factor given by15 s=�T11
2 +T12

2 , and
� is the corresponding projection angle given by15

tan �=T12 /T11. Therefore, by applying Eq. �6�, tomographic
techniques retrieve the transverse phase-space distribution of
a beam using its projections in configuration space. Those
projections can be obtained by varying the strength of the
magnet upstream of the imaging screen which has the
effect of rotating the distribution in phase space through an
angle, �.

In the presence of space-charge a complexity arises in
calculating the transport matrix elements. Our approach is as
follows. If we assume linear forces an expression similar to
Eq. �4� can be formed but the elements of T will depend on
the beam radius and beam position. This is because the net
focusing strength now becomes ��z�=�0�z�− �K /R�z�2�,
where �0 is the magnet’s focusing strength, R is the
2	 rms size of the beam envelope, and K is the generalized

FIG. 1. �Color online� Schematic layout of the configuration for tomogra-
phy, including orientation of the magnets and transfer matrices. The dashed
line shows the evolution of the beam envelope.
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perveance, a dimensionless quantity that is given by
K=2I / I0�
3�3�, where I is the current and 
 and � are the
corresponding relativistic velocity and energy factors. Note
that I0 is the characteristic current, a constant, and equal to
17 kA for electrons. In order to obtain the R dependence with
z we solve the KV envelope equations,22

R��z� + �0�z�R�z� −
K

R�z�
−

�2

R�z�3 = 0. �7�

In order to solve Eq. �7�, the assumed initial conditions at z0

are crosschecked by comparing the calculated- and
measured-beam sizes at z1, the location of our screen. Should
they not agree well, we adjust the initial conditions and re-
peat our envelope calculations until they reach agreement.

Once the evolution of R with respect to z is known, the
net focusing function and the corresponding transport matrix
are calculated by a superimposing many subelements.23

Then, from the transport matrix, we determine the rotation
angle and scaling factor, and finally apply Eq. �6� to obtain
the phase-space projections for the tomography analysis.

III. PHASE-SPACE TOMOGRAPHY SIMULATION

The model proposed in the previous section assumed
linear space-charge forces inside and outside the beam core,
no emittance growth and negligible image forces. To test the
accuracy of our algorithm, we simulated a tomography beam
experiment using the electrostatic particle-in-cell code
WARP.24,25 The code simulates space-charge effects in
2-dimensional �2D� or 3-dimensional �3D� by advancing par-
ticles in a transverse slice under the impact of external forces
and self-consistent self-fields. We used the x-y 2.5-D slice
model of WARP that was shown to be accurate,26 since the
beam is elongated in z compared to the pipe’s diameter, and
varies little during its propagation over a longitudinal dis-
tance comparable to the beam’s diameter. We employed a
512	512 grid for the Poisson solver, a step size of 2 mm
along z, and 640 000 particles. In Sec. III A, we explore the
accuracy of the tomography diagnostic on space-charge, and,
in Sec. III B, we test the accuracy of tomography for differ-
ent beam distributions. Note that in Refs. 23 and 27 we stud-
ied the effects of various errors in the reconstruction such as
the angular reconstruction needed, the total angular span re-
quired, and the effect of uncertainties in magnet strength. For
this discussion, it sufficient to say that a full 180° phase-
space rotation with angular resolution less than 14° will as-
sure a high-resolution phase-space map.

For our simulation, we select a magnet configuration that
consists of two sets of alternating-gradient �FODO� sections,
with four quadrupoles �N=4�. The distance between the
magnets centers is 16 cm. The simulation is initialized at
z=z0 which is located 8 cm upstream the center of the first
quadrupole and the photos and phase spaces are generated at
z=z1 which is sited 5.3 cm downstream the fourth quadru-
pole. Simulating the tomography under that geometry gives
us more confidence about its future applicability in the actual
experiment �see Sec. IV�. Unless stated otherwise, we as-
sumed that the beam starts with a semi-Gaussian distribution,

meaning that the particle density is uniform across it, and the
velocity profile is Gaussian with a uniform temperature.

The procedure of the tomography simulation was as fol-
lows. For each quadrupole current setting, we ran a simula-
tion, collected a snapshot of the beam’s density in configu-
ration space at z=z1, and saved it. We applied the
tomographic reconstruction to those simulated images to pro-
duce a phase space that we then compared with the actual
phase space obtained directly from the simulation. The direct
WARP phase space self-consistently includes nonlinear space
charge and image forces. Thus, repeating this process for
different initial beam distributions and for beams with differ-
ent degrees of space charge intensity provided us with con-
fidence in the technique.

A. Dependence of tomography accuracy
on space-charge

To examine the effect of space charge on the reconstruc-
tion, we used three beams, each of different intensity. The
content of space charge was quantified via the dimensionless
intensity parameter =K /�0R2 �Ref. 28� that compares the
contribution of the emittance and current terms on the rms
envelope equation. Table I lists the intensity parameter, cur-
rent, initial beam size, number of projections, maximum an-
gular step between adjacent projections, and total angular
span we used. Note that while varying the magnets’ focusing
strength, we selected the settings to ensure no beam losses.
Due to the large beam sizes obtained while scanning the
magnets for the 24 mA beam, the total phase space rotation
was restricted to 175°; this was not a problem for the other
two beams where a �180° phase space rotation was
achieved.

The right and left columns in Fig. 2 are the tomographic-
and WARP-generated phase spaces, respectively, for our three
beams in increasing current order from top to bottom. The
inset of the phase spaces indicates the 4	 rms emittances
from those phase spaces. All distributions are at z=z1 and
correspond to the case where the focusing strength for first
and third quadrupole was set �0,1=�0,3=−235.2 m−2 and the
strength of the second and fourth quadrupole was set at
�0,2=�0,4=235.2 m−2. Due to the low current of the beam in
Fig. 2�a�, we neglected the space-charge forces in the tomog-
raphic analysis. This was not the case for the second �Fig.
2�b�� and third beam �Fig. 2�c�� where space charge was
considered in the tomography-reconstruction process accord-
ing to the procedure outlined in Sec. II.

Tomography accurately reconstructed the phase space
for beams with a moderate content of space charge

TABLE I. Simulated beam parameters.


I

�mA�
R

�mm� Total projections

Maximum
angular step

�deg�

Angular
span
�deg�

0.30 0.6 1.3 168 14.0 179.2

0.72 7 2.8 152 14.9 179.2

0.90 24 4.8 126 20 175.0
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��0.72� with an emittance error below 5%. The data for
more intense beams �=0.9� suggest a slightly higher per-
centage of error ��10%� but the agreement between tomog-
raphy and simulation is still relatively good. This lower ef-
fectuality is likely due the substantial amount of space-
charge that, in turn, might engender nonlinear forces not
included in our analysis.

B. Dependence of tomography accuracy on initial
beam distribution

In this section we study the effect of the initial distribu-
tion on the tomography reconstruction. Using two different
distributions, we initiated our simulation at z=z0 and recon-
structed the phase space at z=z1. To compare our findings,
we assume that all the beams are equivalent in rms, meaning
that they have the same current, energy, emittance, and size
as the uniform 7 mA beam in Sec. I. The distributions ex-
plored here are the hollow velocity �uniform xy and hollow
xx�� and five beamlet and are shown in Figs. 3�a� and 3�b�,
respectively. Such distributions are of particular interest in
beam physics. For example, a hollow-velocity distribution
tends to be a general feature of thermionic gridded electron
guns as has been observed experimentally and com-
putationally.29 Additionally, a multibeamlet distribution is
suitable for heavy-ion applications,30,31 where, instead of ac-
celerating one beam it is advantageous to accelerate many
and merge them before they hit the target.

The WARP-generated and tomography-reconstructed

phase spaces are shown in Fig. 4, in the first and second
column, respectively. These results indicate good agreement;
this was true also for the five-beamlet distribution. It is
interesting to note that even though such distribution intro-
duces nonlinear space-charge forces, the linear tomography
model proved surprisingly effective in reconstruction, with
an error less than 7% in the emittance value.

IV. TOMOGRAPHIC MEASUREMENT
OF THE PHASE-SPACE EVOLUTION
FOR SPACE-CHARGE DOMINATED BEAMS

A. Experimental configuration and available
diagnostics

Some of the experiments were carried out on the
University of Maryland Electron Ring �UMER� a 10 keV
nonrelativistic �
=v /c=0.2� ring. The beam current is ad-
justed by an aperture plate at the exit of the anode, which has
six different-sized round slots, including a five-beamlet
mask. Following the plate is a 1.4 m-injection line containing
one solenoid and six matching quadrupoles. The UMER ring
consists of 18 sections each containing four quadrupoles and
two dipoles, distributed over a 11.52 m circumference. The
longitudinal profile of the beam was rectangular with 100 ns
full width half maximum and an 8 ns rise time. The UMER
configuration and its design parameters are detailed
elsewhere.25

A fast Bergoz32 current monitor installed immediately
after the injector solenoid measured the longitudinal current
profile of the beam. Two kinds of fluorescent screens were
installed to map its transverse distribution: one was based on
Gd2O2S�Tb� with a 1.6 �s time response for time-integrated
measurements and the second was a fast ZnO:Ga phosphor
with decay time 2.4 ns for time-resolved measurements. The
screens were placed in all but four sections housing the

FIG. 2. Recovered phase spaces from WARP �left side�, and tomography
�right side� for beams with different intensity parameters: �a� =0.3, �b�
=0.72, and �c� =0.9.

FIG. 3. �Color online� Beam distributions in configuration space �left� and
in phase space �right� at z=z0.
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diagnostic chambers of UMER and one was installed down-
stream of the injector solenoid. The phosphor-screen image
of the beam was reflected by a single surface mirror placed
45° to the screen; then, the beam could be monitored through
a window. For time-resolved measurements, the beam im-
ages were captured by fully programmable intensified
charge-couple device 16-bit camera �PIMAX2; Princeton
Instruments Inc.�.

We conducted further experiments on the long solenoid
experiment �LSE�, a linear system with solenoids serving as
basic focusing magnets rather than the quadrupoles in
UMER. The main transport line consisted of a thermionic
gun, two solenoids �S1 and S2�, a Bergoz coil, and a fast
fluorescent screen. The solenoids were located 13.1 and
29.5 cm from the aperture, the coil was positioned between
them, and the screen was placed 13.5 cm downstream of S2.
The gun produced beams with energy from 1–5 keV. More
details about the LSE configuration are in Ref. 27.

B. Tomography with solenoids

According to the literature, until 2007 all beam tomog-
raphic researches used only quadrupoles magnets to rotate
the phase space. Since quadrupoles focus in one direction
and defocus on the other, they generate large asymmetric
beams and nonlinearities that may alter the results.
Since solenoids afford more uniform focusing, it may be
advantageous to use them in tomography. At University of
Maryland, we completed a proof-of-principle experiment to
benchmark solenoidal tomography on the LSE.33

Before the experiment, we verified the technique by
simulating the process. Using the LSE configuration and fol-
lowing the procedure described in Sec. II, we ran numerous
WARP simulations to generate the projections, and compared

the phase-space obtained directly with that reconstructed
from the data. We found that 48 scans were sufficient to
attain a 180° phase-space rotation and produce phase-space
images with a background noise below 5%. Our linear space-
charge solenoidal tomography model proved its effectiveness
in the reconstruction process with an error of less than 10%
in the value of the rms emittance.33

The experimental procedure involved taking photos at
the screen for each of 48 pairs of magnet strengths. The
electron gun produced a 4 keV, 12 mA space-charge-
dominated beam with a generalized perveance equal to
7.1	10−4, and a non-normalized 4	 rms emittance of
30 �m. Parts of our data are shown in Fig. 5; we give more
results in Ref. 33. The pair settings of the solenoidal
strengths we choose to reconstruct are 74.0 and 60.0 G
�Fig. 5�a�� and 57.3 and 60.0 G �Fig. 5�b�� for S1 and S2,
respectively. The first column corresponds to beam in con-
figuration space as captured by the charge-coupled device
�CCD� camera. To further benchmark solenoidal tomogra-
phy, we compared our experimental findings with the WARP

simulation; our results are also shown in Fig. 5. Note that
both phase spaces indicate a hollow internal structure. These
perturbations were absent when we replaced the initial hol-
low distribution in the simulation with a uniform one. There-
fore, the hollowness we noted likely reflects an initial non-
uniform distribution probably associated with the
nonuniform emission from the gun cathode. We verified this
fact later after the cathode was replaced.

C. Time-dependent phase-space tomography

In this section we demonstrate a proof-of-principle ex-
periment to show the possibility of reconstructing the time-
resolved-phase-space distribution by tomography. We obtain
time-resolved phase-space maps for a parabolic beam bunch
that is close to an ellipsoidal distribution. The time resolution
is of the order of a few nanoseconds, i.e., much shorter than
the beam bunch’s length �50–100 ns�, and therefore adequate
for studying beam dynamics under our beam conditions.

FIG. 4. �Color online� Phase spaces for the 7 mA as obtained by WARP �left
column� and tomography �right column� at z=z1 for two different input
distributions.

FIG. 5. �Color online� Comparison of the configuration space �left column�
and phase space �right column�, between experiment and simulation for two
different magnet-pair settings. Top row corresponds to the measured distri-
bution in experiment and bottom row shows the predictions from WARP

simulation.
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The experiment34 was carried out on the LSE, and to
recover the phase space, the approach described in Sec. III B
was employed. The only difference was the combined use of
fast phosphor screens and an intensified charge-coupled de-
vice �ICCD�-gated camera to map the phase space in narrow
�3–10 ns� longitudinal �time� slices within the beam pulse.
For this experiment, the beam was pulsed at 60 Hz with
energy 5 keV and a peak current equal to 23.5 mA. Figure
6�a� shows the longitudinal current profile from the signal at
the Bergoz FCT, as well as the position of the slices used in
the phase-space measurement �labeled with letters from a to
f�. A number of images at the screen �LC1�, each correspond-
ing to a 3 ns beam slice, were collected by setting the ICCD
camera’s gate window at 3 ns, and moving it progressively
from the beam’s head toward its tail. Figure 6�b� �top� shows
the resulting beam distributions in configuration space for
the six different slices �a, b, c, d, e, and f�. Each photo re-
sulted from 55 frame integrations. As the beam propagates,
each slice will evolve differently in the transverse direction
because it has a different current. Thus, in LC1, there will a
variation of beam size within the pulse, as is clearly evident
in the beam photos in Fig. 6�b�.

Figure 6�b� �bottom� shows the measured phase space
by tomography on the location of the screen. Both
configuration-space images and the phase-space distributions
reveal a detailed structure that differs from slice to slice. As

discussed previously, part of the structure inside the phase
space arises from the nonuniform emission from the gun
cathode. Furthermore, like the configuration-space images,
the phase spaces depend on their position along the beam;
both exhibit symmetry at about the peak of the pulse.

D. Experimental verification of phase-space
tomography

An independent measurement of the phase-space distri-
bution was developed35 by sweeping the smallest aperture
�the pinhole�, mounted on the large diameter aperture wheel
at the exit of the UMER electron gun. The principle of the
process is schematically shown in Fig. 7�a�. Specifically, we
can move the pinhole vertically �same x, different y� and thus
can sample different parts of the full beam behind the pin-
hole. After exiting the gun, the beam passes through a sole-
noid and reaches a phosphor screen located downstream at
L=28.4 cm. Figure 7�b� shows screen photos of individual
beamlets for different pinhole positions yj. The pinhole ra-
dius �0.25 mm� is much smaller than the beamlet radius on
the screen �7 mm�, so that the transverse position of each
electron that reaches the screen is proportional to its trans-
verse velocity at the pinhole’s position. Thus, we can esti-
mate the average angle of the beam at the pinhole, y�� j, by
recording the center Yc of each of the individual beamlets.

A phase space can be generated tomographically by
scanning the injector solenoid located just upstream the
screen. Shown in Fig. 8�a� is the tomographically recon-
structed phase space for the 23 mA beam. The filled dots in
Fig. 8�b� depict the local average transverse-velocity versus
horizontal position obtained from this plot. Specifically, we
evaluated the line integral y�� j =�dy�y���y=yj ,y�� at differ-
ent locations along the spatial direction of the reconstructed

FIG. 6. �Color online� �a� Signal collected at the Bergoz coil showing the
longitudinal current profile of the parabolic beam, indicating the approxi-
mate locations of the camera gates. �b� Beam in configuration space �top�
and in phase space �bottom� for slices a, b, c, d, e, and f, reconstructed at
LC1.

FIG. 7. Illustration of the principle of the pinhole-scan method.

056701-6 Stratakis et al. Phys. Plasmas 17, 056701 �2010�

Downloaded 28 Apr 2011 to 131.225.103.35. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



phase space �see dotted vertical lines in Fig. 8�a��. Depicted
in the same plot by the open squares are the points generated
by the pinhole scan. Interestingly, the pinhole scan data show
a modulation of the centroid position at the same spatial
period �i.e., 0.69 mm� as the anode grid wires which is most
likely a result of the shadow of these wires as the pinhole is
swept past them. Such modulation was not visible on the
tomographic data that samples a vertically integrated phase
space.

E. Phase mixing of intense beams

In this section we explore the mixing properties of
charged particle beams by artificially constructing a distribu-
tion consisting of five distinct but nearby beamlets in a quin-
cunx pattern. Such a distribution is of interest because, from
Poisson’s equation, it enhances greatly the radial nonlinearity
of the self-fields. Also, it is of practical interest36 because it
relates to a class of transverse beam-combining lattice de-

signs that were proposed30,31,37 for achieving, economically,
the high-current, low emittance beams required for HIF
applications.

The experiment38 was carried out on UMER, where the
five-beamlet aperture was placed right at the exit of the gun.
The beam emerging from the mask had a current of 28 mA
measured by the Bergoz, and a rms normalized emittance,
�i,n, of 4 �m, measured by tomography and verified with the
pinhole scan. The beam parameters correspond to a general-
ized perveance, K, of 4.2	10−4 and an intensity parameter
=0.70, placing the beam in the space-charge-dominated
regime.

Figure 9 �left� shows several fluorescent-screen pictures
labeled with the distance from the UMER aperture. Figure 9
�right� shows the xx� phase-space distribution measured by
tomography at the same locations. The images indicate that
the beam core retains, over meters, an intricate dynamical
structure. At 0.28 m although the original beamlet pattern is
not visible in configuration space, the beamlets are separated
in phase space. Focusing the beam implies a rotation of the
phase space, so we expected to see a pattern that naturally
alternates between appearing in configuration and in the ve-
locity space. However, further downstream �9.6 m� this
phase space-pattern erased, pointing to a mixing of the dis-
tribution. Simulations38 suggested that this phase mixing is
related to space charge and occurred faster as the beam in-
tensity increased. Furthermore, both the simulation and ex-
periment revealed an initial rapid growth of emittance that
slowed down as the nonuniform distribution homogenized.
The measured 10% total growth agreed with the predictions
of the free-energy theory,6 where emittance is expected to
rise from the conversion of the excess field energy of a non-
uniform beam into transverse kinetic energy.

Next, we examine the effect of the initial distribution on
the downstream beam evolution. Specifically, in Fig. 10, we
show several fluorescent screen pictures �left� and the corre-
sponding phase spaces �right� taken for a beam with param-
eters comparable to the one with the five beamlets, but that
initially is uniform. Noteworthily, as before we see structures

FIG. 8. �Color online� �a� Tomographically reconstructed phase space of the
23 mA beam at the aperture. �b� Variation in the local average transverse
velocity obtained from �a� �filled cycles� as well as the pinhole scan �open
squares�.

FIG. 9. �Color online� Evolution of a beam leaving a five-beamlet aperture
at different locations inside the UMER ring in configuration space �left� and
xx� phase space �right�.
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that are likely resulting from the imbalance of forces at the
beam edge.39 However, their evolution and mixing rates are
different from the one seen with the five beamlets. As before
we note the appearance of a halo that persists as the beam
propagates through the focusing channel. WARP simulations
indicated that the halo likely is a result of a small beam
mismatch6 and imperfections of the gun’s geometry.40

V. SUMMARY

A model was presented to apply tomography to beams
with space charge by assuming linear forces. The model was
generalized to account for both solenoidal and quadrupole
focusing lattices. The tomography algorithm was bench-
marked against self-consistent simulation for both emittance
and space-charge dominated beams. The diagnostic was also
tested for beams with nonuniform distribution functions such
as a five beamlet distribution, where space charge forces are
initially nonlinear. It was found that the error increased with
the beam intensity but for all cases remained below 10%.
The algorithm was also verified experimentally by compar-
ing its results with that obtained by a pinhole scan. Finally
we experimentally demonstrated time-resolved phase-space
mapping and slice emittance measurement, given a fast
enough scintillator.

For phase-space tomography to be applicable to a wider
range of accelerators, we foresee the following possible im-
provements. The approximation we make in this paper of
linear forces everywhere does not adequately address the dy-
namics of halo particles straying far away from the beam
core.41 The algorithm also assumes a constant beam energy, a
constraint that can be relaxed by using the appropriate trans-
fer matrices for beams undergoing acceleration. The FBA
described in this paper provides excellent reconstructions of
phase space where we are capable of taking a large number
of projections �50–100�. Since the UMER screens are suffi-
ciently robust, we have not looked into minimizing the num-
ber of projections needed for reconstruction. For high-energy

ion beams with a relatively short scintillator lifetime such as
the NDCX or SNS,42 it is worthwhile to optimize this num-
ber, for instance, by using algebraic reconstruction
algorithms.21 We demonstrated time-resolved tomography in
the nanosecond timescale, which is sufficient for the UMER
beam. The technique should be extensible to faster times-
cales �e.g., picosecond� using appropriate diagnostics such as
�prompt� optical transition radiation and a streak camera.
Finally, solenoidal tomography for beams with nonzero ca-
nonical angular momentum would be necessary for applying
the diagnostic to beams born within magnetic fields as in the
case of flat-beam photoinjectors for linear colliders.43
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